Original Article

Global Prevalence, Temporal Trends, and Associated Mortality of Bacterial Infections in Patients with Liver Cirrhosis: A Meta-analysis

Yu-Xin Tian^{1,2}, Bai-Yun Wu^{1,2}, Qi An^{1,2}, Yin-Ping Wu^{1,2}, Jing Zuo^{1,2}, Yee Hui Yeo³ and Yu-Chen Fan^{1,2*}

¹Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong, China; ²Hepatology Institute, Shandong University, Jinan, Shandong, China; ³Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Received: June 01, 2025 | Revised: September 14, 2025 | Accepted: September 26, 2025 | Published online: October 27, 2025

Abstract

Background and Aims: Bacterial infections (BIs) are common and severe complications in patients with liver cirrhosis, but global data are limited. Here, we aimed to evaluate the global prevalence, temporal changes, and associated mortality risk of BIs in liver cirrhosis. Methods: We systematically searched PubMed, Embase, Web of Science, and the Cochrane Library for eligible studies published without language restrictions until 11 August 2025. A random-effects model was used for meta-analyses, meta-regression by study year, and pooling adjusted hazard ratios. Results: Fifty-nine studies, including 1,191,421 patients with cirrhosis, were analyzed. The pooled prevalence of BIs (33 studies) was 35.1% (95% confidence interval (CI): 29.2-41.4). The prevalence of Escherichia coli and Streptococcus spp. was 3.8% (95% CI: 2.5-5.2) and 1.5% (95% CI: 0.8-2.6), respectively. The pooled prevalence of multidrug-resistant bacteria was 6.8% (95% CI: 4.0-11.3). The most common BI sites were the gastrointestinal tract, ascites fluid, and urinary tract. The highest prevalence of BIs was reported in Europe (38.2%; 95% CI: 24.8-53.6), followed by South America (37.5%; 95% CI: 29.7-46.1) and Asia (22.8%; 95% CI: 16.3-30.9). Patients with acute-on-chronic liver failure showed the highest prevalence of BIs (44.2%; 95% CI: 29.7-59.8). A modest increasing trend in BIs prevalence was observed over time. BIs were associated with an increased risk of mortality in patients with cirrhosis (adjusted hazard ratios 2.22, 95% CI 1.33-3.71). Conclusions: BIs are prevalent in cirrhosis, especially in acute-on-chronic liver failure, with a modest upward trend and increased mortality risk.

Citation of this article: Tian YX, Wu BY, An Q, Wu YP, Zuo J, Yeo YH, *et al.* Global Prevalence, Temporal Trends, and Associated Mortality of Bacterial Infections in Patients with Liver Cirrhosis: A Meta-analysis. J Clin Transl Hepatol 2025. doi: 10.14218/JCTH.2025.00260.

Introduction

Bacterial infections (BIs) pose a substantial threat to public health, with severe illnesses and increasing mortality rates caused by antibiotic-resistant strains.¹ These infections lead to serious complications, especially in vulnerable populations such as the elderly and immunocompromised individuals. Estimating hospital infection rates is difficult due to varying diagnostic criteria, under conditions ranging from the presence of asymptomatic cases to the complexity of healthcare settings. In addition, the Centers for Disease Control and Prevention in the United States and Europe have recommended different thresholds for the diagnosis of various BI infections.²¹³ Therefore, accurate assessment is essential for the effective control of infection and improved outcomes for infected patients.

Cirrhosis is the end stage of various chronic liver diseases, including fatty liver disease, alcoholic liver disease, and hepatitis virus infection. BIs are frequent and serious complications in patients with cirrhosis, creating significant clinical challenges due to their high morbidity, high shortterm mortality, and detrimental impact on long-term prognosis.4-7 Patients with cirrhosis are vulnerable to BIs due to various factors, including gut dysbiosis, compromised intestinal integrity, increased bacterial translocation across the gut wall, immune dysfunction associated with cirrhosis, and portal-systemic shunting.^{5,8} BIs cause systemic inflammation that leads to organ failure and acute-on-chronic liver failure (ACLF), resulting in a high risk of short-term mortality and potentially increasing the mortality rate fourfold.9 The diversity of bacterial pathogens and the variety of infection sites further complicate the management of these patients 10,11 Furthermore, the prevalence and types of BIs in patients with cirrhosis vary substantially across different countries and regions, reflecting differences in healthcare infrastructure, antimicrobial stewardship, local microbial ecology, and resistance landscapes. 12 In addition, a major concern is the increasing prevalence of infections caused by multidrug-resistant (MDR) organisms. Patients infected with MDR bacteria present higher rates of septic shock, intensive care unit (ICU) admissions, mechanical ventilation, or renal replacement therapy compared with patients without MDR bacteria.7,10,12 Understanding the regional and global epidemiology of these infections is crucial for improving the management and outcomes of patients with cirrhosis.

Keywords: Cirrhosis; Acute-on-chronic liver failure; Bacterial infections; Prevalence; Global; Meta-analysis.

^{**}Correspondence to: Yu-Chen Fan, Department of Hepatology, Qilu Hospital of Shandong University, Hepatology Institute, Shandong University, 107 Wenhuaxi Road, Shandong, Jinan 250012, China. ORCID: https://orcid.org/0000-0002-9126-679X. Tel: +86-531-82169593, Fax: +86-531-86927544, E-mail: pyfanyuchen@126.com or fanyuchen@sdu.edu.cn.

While previous studies have focused on local or regional estimates, global evidence remains fragmented. Here, we conducted a meta-analysis to estimate the global prevalence of BIs in patients with liver cirrhosis, investigate temporal trends using meta-regression, and assess their association with mortality.

Methods

Search strategy and selection criteria

This meta-analysis was conducted following the updated PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (2020), 13,14 and the protocol was registered on PROSPERO (CRD42024589916). We searched PubMed, Embase, Web of Science, and the Cochrane Library until August 11, 2025, without language restrictions, to identify relevant full-text studies reporting BIs in patients with cirrhosis. The search strategy included MeSH terms and keywords such as "Bacteria", "Escherichia coli", "Staphylococcus", "Klebsiella", "Streptococcus", "Pseudomonas", "Enterococcus", "Acinetobacter", "Proteus", and conditions like "bacteremia", "pneumonia", and "sepsis". These terms were combined with Boolean operators ("OR", "AND") and refined with liver cirrhosis-related terms such as "cirrhosis" and "cirrhotic" in the Keywords, Title, and Abstract fields. Supplementary Table 1 shows the search strategies for all included databases. We excluded letters, editorials, case reports, reviews, comments, and case series because of their insufficient methodology. Additionally, we searched for potential studies by manually reviewing the reference lists of the included studies and relevant reviews. Title and abstract screening for eligibility was independently conducted by TYX and WYP based on a predefined set of inclusion and exclusion criteria (Supplementary Table 2). Any discrepancies were resolved through consensus or by consulting ZJ or WBY.

Data extraction and quality assessment

A complete information list was extracted from the articles and entered into a Microsoft Excel worksheet. The following data were independently extracted by two reviewers (TYX and WYP): author names, publication year, period of conduct, study location, sample size, study design, sample characteristics, type of infection, infected sites, infected bacterial species, and prevalence estimates. In addition, for each study, we extracted the case definitions of BIs, including site-specific criteria and thresholds (Supplementary Table 3). For each included study, we extracted the ACLF definition that was explicitly stated or cited. We then classified each definition according to the European Association for the Study of the Liver (EASL)-Chronic Liver Failure Consortium (CLIF), 15 Asian-Pacific Association for the Study of the Liver (APASL), 16,17 Chinese Group on the Study of Severe Hepatitis B,18 North American Consortium for the Study of End-Stage Liver Disease,4 or other established criteria. When a study cited more than one set of criteria, the one designated as primary by the authors was used for classification. The authors were contacted to request additional data if the relevant data were not readily available. At least two authors independently evaluated the quality of the included studies (TYX, WYP, ZJ, and WBY) using the Joanna Briggs Institute's Critical Appraisal Checklist for Prevalence Studies. 19 Any disagreements were resolved by consensus or consultation with a third author (FYC).

Statistical analysis

The prevalence of BIs was calculated via a meta-analysis of single proportions by dividing the number of affected pa-

tients by the total study population.²⁰ Prior to pooling the data for meta-analysis, the original proportions and the logit transformations were tested for normality, and the method that best approximated a normal distribution was selected based on the results.²¹ Quantitative variables are presented herein as the mean values ± standard deviations and median values with corresponding ranges. The significance level was set at 0.05, and differences with p-values below this threshold were considered statistically significant. A random-effects model was used for all analyses to account for between-study variability, as recommended in the Cochrane Handbook.²² Subgroup analyses were performed based on study characteristics, including study location, country's economic status (categorized by the World Bank classification of high-, upper-middle-, and low-income countries),23 study design, study period, and patient populations. The significance threshold for subgroup differences was set at p < 0.05, with values below this threshold indicating significance. Publication bias was assessed qualitatively by visually inspecting funnel plot symmetry. A symmetric funnel plot suggests minimal publication bias, while asymmetry may indicate potential publication bias, heterogeneity, or small-study effects.²¹ We modeled temporal trends in BIs prevalence using random-effects meta-regression with the study mid-year as a continuous moderator, and results were visualized on the proportion scale via a bubble plot.²⁴ Adjusted hazard ratios (HRs) for mortality associated with BIs were pooled using a random-effects model. The analysis was conducted in R v4.2.3 via meta-packages and metaprop functions.²⁵

Results

Of the 31,002 articles identified through the search, 59 studies were included in the review (Fig. 1). These included studies involved 1,191,421 patients. Table 1 shows the characteristics of each study. 4,6,7,10,12,26,27-79 These studies reported BIs in hospitalized, outpatient, ICU-admitted, and ACLF patients with cirrhosis. Thirty-three studies examined multiple BIs, and twenty-six studies examined specific BIs, such as bacteraemia, spontaneous bacterial peritonitis (SBP), and urinary tract infection (UTI). These studies were conducted in Asia (n = 24), Europe (n = 17), North America (n = 10), South America (n = 3), and Africa (n = 3), with two multicenter studies. Of the 59 studies, 30 were retrospective cohort studies, 22 were prospective cohort studies, five were case-control studies, and two were cross-sectional studies. The sample sizes of the included studies ranged from 45 to 742,391. According to the Joanna Briggs Institute's Critical Appraisal Checklist for Prevalence Studies, 46 studies were rated low risk of bias, whereas 13 were rated moderate risk of bias (Supplementary Table 4).

Sample attributes

In 49 studies, all cases of cirrhosis were included in the denominator, whereas ACLF was included in 10 studies. The criteria for diagnosing cirrhosis included clinical, biochemical, ultrasonographic, and endoscopic assessments. Histopathology was used in 29 studies, ICD coding in four studies, APASL-ACLF criteria in four studies, and EASL-ACLF criteria in five studies, while 17 studies did not specify their criteria. The etiology of cirrhosis varies, with alcohol, viral hepatitis, and nonalcoholic fatty liver disease being the most common causes.

Description of BIs

Among 1,191,421 patients (59 studies), 180,132 had BIs. Escherichia coli (E. coli) was reported in 301 out of 8,592

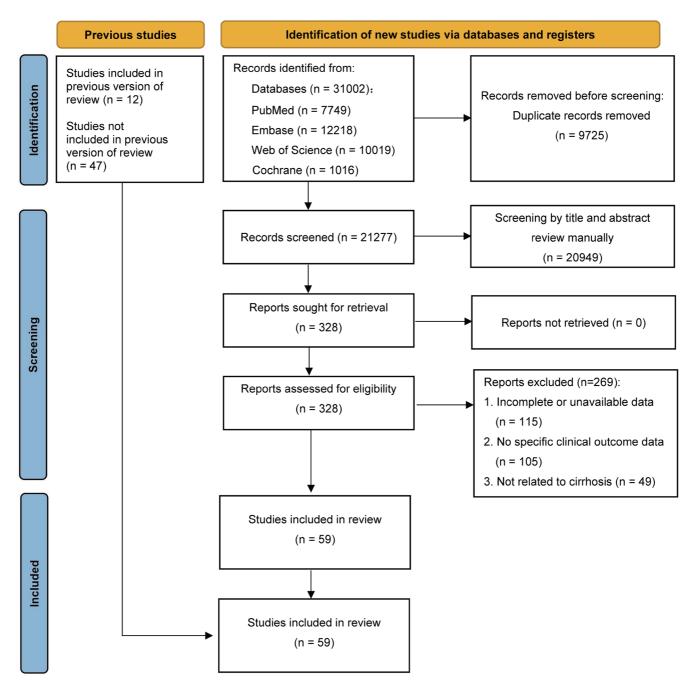


Fig. 1. PRISMA flow diagram of the search strategy.

patients (15 studies), *Streptococcus spp.* in 96 out of 8,709 patients (14 studies), *Klebsiella spp.* in 96 out of 8,484 patients (14 studies), *Staphylococcus spp.* in 124 out of 7,917 patients (13 studies), *Pseudomonas spp.* in 25 out of 8,002 patients (nine studies), *Enterococcus spp.* in 64 out of 5,964 patients (eight studies), *Acinetobacter spp.* in seven out of 798 patients (three studies), and *Proteus spp.* in seven out of 1,321 patients (three studies). Gram-negative bacteria were reported in 561 out of 9,253 patients (15 studies), and gram-positive bacteria were reported in 444 out of 9,253 patients (15 studies). The types of BIs included SBP, reported in 30 studies (3,853 out of 48,304 patients), UTI in 16 studies

(1,211 out of 16,261 patients), bacteraemia in 16 studies (1,080 out of 24,622 patients), respiratory tract infection in 14 studies (996 out of 15,236 patients), skin and soft tissue infection in 10 studies (338 out of 10,508 patients), gastrointestinal infection (GII) in seven studies (324 out of 3,129 patients), pneumonia in six studies (284 out of 4,680 patients), spontaneous bacterial empyema in three studies (34 out of 1,767 patients), cellulitis in two studies (78 out of 2,324 patients), and sepsis in two studies (63 out of 1,678 patients).

Meta-analysis with subgroup analysis

On the basis of 59 studies that investigated both single and

ysis
meta-anal
in this n
ncluded
the studies included
of the
eristics
Characteristics
Table 1.

3300			and year				
Authors (year)	Country, period of conduct	Study design	No. of patients	BI evaluated and criteria	Prevalence of BI	Site, mode of infection	Bacteriological char- acteristics
Piano <i>et al.</i> 2019 ¹²	Multicenter, 2015–2016	Prospec- tive cohort	1,302	Multiple BI	740/1,302	NS	MDR (n = 253)
Baijal e <i>t al.</i> 2014 ²⁷	India, 2013–2013	Prospec- tive cohort	420	Multiple BI	93/420	SBP (n = 33)	E. coli (n = 18), Staphylococcus spp. (n = 15), Strepto-coccus spp. (n = 7), Klebsiella spp. (n = 6), Pseudomonas spp. (n = 2), MDR (n = 20)
Borzio <i>et</i> <i>al.</i> 2001 ²⁸	Italy, 1995–1996	Prospective cohort	405	Multiple BI	150/405	UTI (n = 62), SBP (n = 34), bacteraemia (n = 32), RTI (n = 26), others (n = 19)	E. coli (n = 38), S. aureus (n = 19), Enterococcus spp. (n = 16), Streptococcus spp. (n = 12), Pseudomonas spp. (n = 5), Klebsiella spp. (n = 3), Proteus spp. (n = 2), others (n = 51)
Kremer <i>et</i> <i>al.</i> 2022 ²⁹	Germany, 2019–2021	Prospec- tive cohort	239	Multiple BI	151/239	NS	MDR (n = 7)
Mohan <i>et</i> <i>al</i> . 2011a ³⁰	India, 2007–2008	Case- control	200	SSTI	21/200	SSTI (n = 21)	E. coli (n = 11), K. pneumoniae (n = 4), S. aureus (n = 2)
Fernández et al. 2012 ¹⁰	Spain, 2005–2007	Prospective cohort	1,578	Multiple BI	390/1,578	SBP (n = 126), UTI (n = 98), cellulitis (n = 66), sepsis (n = 62), pneumonia (n = 46), bacteraemia (n = 30), purulent bronchitis (n = 27), catheter infection (n = 23), others (n = 29)	MDR (n = 92)
Bajaj <i>et</i> <i>al.</i> 2014 ⁴	USA, NS	Prospec- tive cohort	207	Multiple BI	80/507	NS	NS
El-Amin et al. 2017³¹	Egypt, NS	Cross- sectional	100	Multiple BI	54/100	SBP (n = 24), UTI (n = 13), RTI (n = 12), GII (n = 3), SSTI (n = 1), sepsis (n = 1)	Staphylococcus spp. (n = 27), Streptococcus spp. (n = 6), E. coli (n = 4), Enterococcus spp. (n = 2), Pseudomonas spp. (n = 1), Klebsiella spp. (n = 1), others (n = 5)
Bajaj <i>et al.</i> 2018 ³²	USA, NS	Prospec- tive cohort	2,743	Multiple BI	918/2,743	UTI (n = 297), SBP (n = 227), RTI (n = 136), bacteraemia (n = 121), SSTI (n = 95), others (n = 146)	NS
							(continued)

Tian Y.X. et al: Bacterial infections in liver cirrhosis

Authors (year)	Country, period of conduct	Study design	No. of patients	BI evaluated and criteria	Prevalence of BI	Site, mode of infection	Bacteriological characteristics
Bartoletti et al. 2014 ³³	Italy, 2008-2012	Retrospec- tive cohort	8,874	Bacteraemia	146/8,874	Bacteraemia (n = 146)	E. $coli$ (n = 43), $Staphy-lococcus spp.$ (n = 21), K . $pneumoniae$ (n = 29), E . $faecium$ (n = 15), E . $faecalis$ (n = 12), $Pseudomonas spp.$ (n = 10), $Acinetobacter spp.$ (n = 10), S . $pneumoniae$ (n = 4), others (n = 28)
Li <i>et al.</i> 2015a ³⁴	China, 2011–2013	Retrospec- tive cohort	980′9	SBP	980'9/905	SBP (n = 506)	NS
Alexopoulou et al. 2013 ³⁵	Greece, 2008–2011	Retrospective cohort	156	SBP	47/156	SBP (n = 47)	Streptococcus spp. (n = 10), Enterococcus spp. (n = 9), E. coli (n = 8), Staphylococcus spp. (n = 7), Klebsiella spp. (n = 5), Pseudomonas spp. (n = 2), MDR (n = 9), others (n = 6)
Dionigi <i>et</i> <i>al</i> . 2017 ³⁶	USA, 2007-2008	Retrospec- tive cohort	781	Multiple BI	200/781	Bacteraemia (n = 73), SBP (n = 71), UTI (n = 37), pleural fluid (n = 9), others (n = 69)	MDR (n = 46), GNB (n = 100), GPB (n = 139)
Bajaj <i>et al.</i> 2019 ³⁷	USA, 2013-2014	Prospec- tive cohort	2,864	Multiple BI	998/2,864	UTI (n = 256), SBP (n = 218), RTI (n = 132), bacteraemia (n = 110), SSTI (n = 89)	C. difficile (n = 65)
Caly <i>et al.</i> 1993³ ⁸	Brazil, 1987–1990	Prospec- tive cohort	170	Multiple BI	80/170	SBP (n = 32), UTI (n = 26), pneumonia (n = 22), SSTI (n = 12), bacteraemia (n = 4), others (n = 7)	E. $coli$ (n = 12), $Strepto-coccus spp.$ (n = 10), $S.$ aureus (n = 8), $K.$ pneumoniae (n = 4), Proteus $spp.$ (n = 3), others (n = 10)
Santoiemma et al. 2020 ³⁹	USA, 2006-2016	Retrospective cohort	2,159	SBP	314/2,159	SBP (n = 314)	NS
Evans <i>et</i> <i>al</i> . 2003 ⁴⁰	USA, 1994-2000	Prospec- tive cohort	427	SBP	23/427	SBP (n = 23)	S. viridans $(n = 4)$, S. aureus $(n = 3)$, Pseudomonas spp. $(n = 1)$, others $(n = 6)$
Hung <i>et al.</i> 2015 ⁴¹	China, 2004–2004	Retrospective cohort	16,992	SBP	451/16,992	SBP (n = 451)	NS
D'Oliveira <i>et</i> <i>al</i> . 2022 ⁴²	Brazil, 2012–2018	Retrospective cohort	784	Multiple BI	285/784	NS	NS
Tang <i>et al.</i> 2022 ⁴³	China, 2020–2022	Retrospec- tive cohort	1,271	Multiple BI	480/1,271	SBP (n = 292), RTI (n = 82), UTI (n = 12), GII (n = 9), SSTI (n = 3), others (n = 83)	NS
							(c) rejuccy

continued

Authors	Country, period	Study	No. of	BI evaluated	Prevalence of BI	Site, mode of infection	Bacteriological char-
Liu <i>et al.</i> 2020 ⁴⁴	China, 2016–2018	Retrospec- tive cohort	974	Multiple BI	203/974	SBP (n = 76), RTI (n = 54), UTI (n = 28), bacteraemia (n = 18), GII (n = 12), SSTI (n = 3), others (n = 12)	NS
Cheng <i>et</i> <i>al</i> . 2017 ⁴⁵	China, 2013–2016	Retrospec- tive cohort	1,043	Bacteraemia	112/1,043	Bacteraemia (n = 112)	NS
Li <i>et al.</i> 2015b ⁴⁶	China, 2010–2013	Retrospec- tive cohort	419	SBP	82/419	SBP (n = 82)	NS
Choudhuri <i>et al.</i> 2018 ⁴⁷	India, 2015–2017	Retrospec- tive cohort	106	Multiple BI	23/106	NS	MDR (n = 23)
Ponzetto <i>et</i> al. 2000 ⁴⁸	Italy, NS	Case- control	45	GII	40/45	GII (n = 40)	NS
Rahimkhani et al. 2008 ⁴⁹	Pakistan, 2006–2008	Case- control	09	GII	39/60	GII (n = 39)	NS
TANDON et al. 2012 ⁷	USA, 2009-2010	Retrospec- tive cohort	746	Multiple BI	115/746	UTI (n = 37), SBP (n = 28), pneumonia (n = 22), bacteraemia (n = 10), cellulitis (n = 12), SBEM (n = 2), others (n = 4)	E. coli (n = 15), K. pneu- moniae (n = 16), S. aureus (n = 10), Streptococcus spp. (n = 4), P. aerugi- nosa (n = 2), P. mirabilis (n = 2), others (n = 21)
Siringo e t al. 1997 ⁵⁰	Italy, NS	Case- control	153	GII	117/153	GII (n = 117)	NS
Angeloni <i>et</i> al. 2008 ⁵¹	Italy, 2004–2006	Retrospec- tive cohort	228	SBP	38	SBP (n = 38)	E. coli (n = 2), K. pneumo- niae (n = 2), Enterococ- cus spp. (n = 2), S. aureus (n = 1), others (n = 2)
Chen <i>et al.</i> 2019 ⁵²	China, 2015–2015	Prospec- tive cohort	526	GII	104/526	GII (n = 104)	C. difficile (n = 104)
Zhao <i>et al.</i> 2018 ⁵³	China, 2011–2017	Retrospec- tive cohort	1,465	Multiple BI	635/1,465	Bacteraemia (n = 199), RTI (n = 193), SBP (n = 191), UTI (n = 42), others (n = 10)	MDR (n = 280)
Fernández <i>et al.</i> 2019 ⁵⁴	Europe, 2011–2011	Prospec- tive cohort	1,146	Multiple BI	455/1,146	SBP (n = 130), UTI (n = 111), pneumonia (n = 85), SSTI (n = 44), bacteraemia (n = 28), others (n = 122)	NS

Table 1. (continued)

Tian Y.X. et al: Bacterial infections in liver cirrhosis

Authors (year)	Country, period of conduct	Study design	No. of patients	BI evaluated and criteria	Prevalence of BI	Site, mode of infection	Bacteriological characteristics
Sargenti <i>et</i> <i>al.</i> 2015 ⁶	Sweden, 2001–2010	Retrospec- tive cohort	633	Multiple BI	241/633	UTI (n = 76), SBP (n = 61), pneumonia (n = 55), SSTI (n = 51), bacteraemia (n = 48), mixed infection (n = 19), others (n = 88)	NS
Gunjača <i>et</i> al. 2010 ⁵⁵	Croatia, 2006–2007	Prospective cohort	108	SBP	23/108	SBP (n = 23)	E. coli (n = 7), MRSA (n = 2), Acinetobacter spp. (n = 2), S. aureus (n = 1), Streptococcus spp. (n = 1), S. epidermidis (n = 1), E. faecalis (n = 1)
Singal <i>et</i> <i>al.</i> 2014 ⁵⁶	USA, 1998-2007	Retrospec- tive cohort	742,391	Multiple BI	168,654/742,391	NS	NS
Chu <i>et al.</i> 1995 ⁵⁷	China, 1992–1992	Retrospective cohort	443	SBP	140/443	SBP (n = 140)	NS
Mohan <i>et</i> <i>al.</i> 2011b ⁵⁸	USA, 2008-2009	Prospec- tive cohort	110	SBP	7/110	SBP (n = 7)	E. coli $(n = 1)$, Klebsiella spp. $(n = 1)$, S. aureus $(n = 1)$
Cadranel <i>et</i> <i>al.</i> 1999 ⁵⁹	France, 1994–1994	Case- control	244	ILI	38/244	UTI (n = 38)	NS
Zhu <i>et al.</i> 2012 ⁶⁰	China, 2007–2010	Retrospective cohort	240	Multiple BI	60/240	NS	NS
Xing <i>et al.</i> 2014 ⁶¹	China, 2011–2013	Retrospective cohort	734	Multiple BI	79/734	RTI (n = 50), UTI (n = 26), others (n = 4)	NS
Makhlouf <i>et</i> <i>al</i> . 2012 ⁶²	Egypt, 2010–2011	Cross- sectional	901	SBEM	16/901	SBEM (n = 16)	E. coli (n = 6), K. pneu- moniae (n = 2), Strep- tococcus spp. (n = 2), P. aeruginosa (n = 1)
Xiol <i>et al.</i> 1996 ⁶³	USA, 1988-1992	Prospec- tive cohort	120	SBEM	16/120	SBEM (n = 16)	E. coli (n = 8), Streptococcus spp. (n = 5), Enterococcus spp. (n = 2), K. pneumoniae (n = 2), P. stutzeri (n = 1)
Syed <i>et al.</i> 2007 ⁶⁴	Nepal, NS	Prospec- tive cohort	81	SBP	20/81	SBP (n = 20)	E. coli $(n = 3)$, S. pneu- moniae $(n = 2)$, P. aer- uginosa $(n = 1)$, Acine- tobacter spp. $(n = 1)$
Abu-Freha <i>et al.</i> 2021 ⁶⁵	Israel, 1996–2020	Retrospective cohort	1,035	SBP	173/1,035	SBP (n = 173)	NS
Dia <i>et al.</i> 2014 ⁶⁶	Senegal, 2010–2010	Prospec- tive cohort	55	SBP	15/55	SBP (n = 15)	NS
Rubinstein <i>et al.</i> 2001 ⁶⁷	Uruguay, 1998–2000	Prospec- tive cohort	64	SBP	17/64	SBP (n = 17)	NS

7
0
(I)
~
~
2
.=
4
-
-
\circ
()
Š
\sim
$\overline{}$
a
<u>•</u>
흦
рlе
aple

	,						
Authors (year)	Country, period of conduct	Study design	No. of patients	BI evaluated and criteria	Prevalence of BI	Site, mode of infection	Bacteriological char- acteristics
Karvellas <i>et</i> <i>al</i> . 2010 ⁶⁸	United Kingdom, 2003-2005	Retrospec- tive cohort	184	Bacteraemia	67/184	Bacteraemia (n = 67)	NS
Mücke <i>et</i> <i>al.</i> 2018 ⁶⁹	Germany, 2008–2015	Retrospective cohort	173	Multiple BI	80/173	SN	NS
Fernández <i>et</i> al. 2017 ²⁶	Spain, NS	Prospec- tive cohort	407	Multiple BI	269/407	SBP (n = 63), UTI (n = 52), pneumonia (n = 54), SSTI (n = 19), bacteraemia (n = 19), others (n = 62)	SN
Katoonizadeh $et al. 2010^{70}$	Belgium, 2002–2007	Prospec- tive cohort	53	Multiple BI	31/53	SN	NS
Su <i>et al.</i> 2021 ⁷¹	China, 2014–2015	Retrospec- tive cohort	609	Bacteraemia	63/609	Bacteraemia (n = 63)	E. coli (n = 23), Klebsiella spp. (n = 14), Acinetobacter spp. (n = 4), S. epidermidis (n = 4), Streptococcus $spp.$ (n = 4), S. aureus (n = 3), Pseudomonas $spp.$ (n = 1), E. faecium (n = 1), S. hominis (n = 1), MDR (n = 25), others (n = 8)
Moreau <i>et</i> <i>al.</i> 2013 ⁷²	Europe, 2011–2011	Prospec- tive cohort	303	Multiple BI	154/303	NS	NS
Shalimar et al. 2018 ⁷³	India, 2011–2017	Retrospective cohort	417	Multiple BI	320/417	NS	NS
Cai et al. 2017 ⁷⁴	China, 2008–2014	Retrospective cohort	389	Multiple BI	266/389	SN	NS
Cao <i>et al.</i> 2024 ⁷⁵	Multicenter, 2021–2022	Prospec- tive cohort	1,293	Multiple BI	1,293/4,238	SBP (n = 391)	E.coli (n = 145), K. pneumo- niae (n = 35), Enterococcus spp.(n = 31), S. aureus(n = 22), Streptococcus spp.(n = 28), Pseudomonas spp.(n = 10), C.difficile (n = 8), MDR (n = 74)
Nakayama <i>et</i> al. 2018 ⁷⁶	Japan , 2011–2014	Retrospective cohort	102	Multiple BI	26/102	NS	NS
Jeong <i>et</i> <i>al.</i> 2025 ⁷⁷	South Korea 2009–2021	Retrospective cohort	381,691	Multiple BI	65,122/381,691	NS	NS
Hoshi <i>et al.</i> 2021 ⁷⁸	Japan, 2012–2019	Retrospective cohort	285	Multiple BI	57/285	NS	NS
Park <i>et al.</i> 2015 ⁷⁹	South Korea 2010-2012	Retrospec- tive cohort	442	Multiple BI	110/442	NS	NS

C. difficile, Clostridioides difficile; E. coli, Escherichia coli; E. faecalis, Enterococcus faecalum; Enterococcus faecalum; Enterococcus faecalum; Enterococcus faecalum; Enterococcus and the siella preumoniae; MDR, Multidrug-resistant; MRSA, methicillin-resistant Staphylococcus aureus; NS, not stated; P. aeruginosa, Pseudomonas aeruginosa; P. mirabilis; P. stutzeri, Pseudomonas stutzeri; RTI, respiratory tract infection; S. aureus, Staphylococcus aureus; S. epidermidis; S. tominis, Staphylococcus hominis; S. pneumoniae, Streptococcus pneumoniae; S. viridans, Streptococcus viridans; SBEM, spontaneous bacterial empyema; SBP, spontaneous bacteria peritonitis; SSTI, skin and soft tissue infection; UTI, urinary tract infection.

multiple BIs, the pooled overall prevalence of BIs in cirrhosis patients was 26.3% (95% confidence interval (CI): 20.9-32.5) (Fig. 2). This prevalence increased to 35.1% (95% CI: 29.2-41.4) when only the 33 studies focused on multiple BIs were pooled (Supplementary Fig. 1). Subgroup analysis revealed that the main sources of variation in overall BI estimates were the population studied, the geographic location, the study design, the country's economic status, and the decade in which the study was conducted. Higher overall BI estimates were observed in studies that included patients with ACLF, patients admitted to the ICU, or outpatients as the denominator than in those involving all hospitalized patients (44.2%, 29.8%, 34.3%, and 21.7%, respectively; p = 0.0232) (Fig. 3). Furthermore, in a prespecified subgroup analysis stratified by ACLF definition, the pooled BI prevalence was 51.9% (95% CI: 33.4-69.8) for EASL-CLIF and 32.0% (95% CI: 14.2-57.2) for APASL. The unspecified definition category contained only one study, yielding 58.5% (95% CI: 44.1-71.9) (Supplementary Fig. 2). The prevalence of BIs varied across different regions of the world. The estimates from Europe (38.2%) were higher than those from South America (37.5%), Asia (22.8%), North America (17.0%), and Africa (16.4%), p = 0.0007 (Fig. 4). The studies with the highest prevalence pooled were from Pakistan (65.0%), Belgium (58.5%), and Germany (55.1%), p < 0.01(Supplementary Fig. 3). Moreover, the prevalence in tropical zones (28.3%) was higher than in temperate zones (25.1%) (Supplementary Fig. 4). Additionally, estimates from lowermiddle-income countries (27.2%) were higher than those from high-income (26.3%) and upper-middle-income countries (21.8%), p = 0.7479 (Supplementary Fig. 5). An increasing trend in the pooled estimates of overall BIs was observed over the last ten years, rising from 20.9% (95% CI: 15.4–27.6) to 30.5% (95% CI: 21.7–40.9), p = 0.0895(Supplementary Fig. 6). Furthermore, the prevalence varied by study design, with case-control studies showing the highest prevalence at 49.9% (Supplementary Fig. 7).

Types of BIs

The pooled prevalence of *E. coli* in patients with cirrhosis was 3.8% (95% CI: 2.5–5.2), that of *Streptococcus* spp. was 1.5% (95% CI: 0.8–2.6), that of *Klebsiella* spp. was 1.3% (95% CI: 0.9–1.8), that of *Staphylococcus* spp. was 2.0% (95% CI: 1.0–4.0), that of *Pseudomonas* spp. was 0.3% (95% CI: 0.2–0.6), that of *Enterococcus* spp. was 1.3% (95% CI: 0.6–2.8), that of *Acinetobacter* spp. was 0.9% (95% CI: 0.4–1.8), that of *Proteus* spp. was 0.6% (95% CI: 0.2–1.4), and the overall prevalence of gram-negative bacteria was 6.4% (95% CI: 4.3–9.3), that of gram-positive bacteria was 4.2% (95% CI: 2.1–8.3), and that of MDR bacteria was 6.8% (95% CI: 4.0–11.3) (Supplementary Figs. 8–19).

Sites of BIs

The site-specific pooled prevalence of BIs was highest for GII (18.4%), followed by SBP (12.4%), UTI (7.0%), respiratory tract infection (7.0%), bacteraemia (5.1%), skin and soft tissue infection (2.6%), and spontaneous bacterial empyema (1.9%) (Supplementary Figs. 20–26).

The temporal trends of BIs

After excluding studies without reported study years, 52 studies remained, spanning study mid-years 1988–2022. Random-effects meta-regression showed an upward temporal trend ($\beta_1=0.0176$, SE 0.0221; p=0.426), corresponding to an annual percent change of 1.78% (95% CI: -2.54-6.29). Predicted prevalence increased from 17.9%

(95% CI: 7.8–36.1) in 1988 to 28.5% (95% CI: 16.9–43.8) in 2022 (Fig. 5).

Association between BIs and mortality

Across six studies reporting adjusted HRs for mortality, BIs were associated with a higher risk of death, with pooled adjusted HRs of 2.22 (95% CI: 1.33–3.71). Between-study heterogeneity was extreme ($I^2 = 99.4\%$, $\tau^2 = 0.233$), and the 95% prediction interval was 0.58–8.55, indicating substantial variation in the true effects across settings (Fig. 6).

Risk of bias

The funnel plot showed symmetry, indicating no significant evidence of publication bias (Supplementary Fig. 27). 80 However, heterogeneity or small-study effects cannot be completely excluded. The substantial heterogeneity observed among individual studies was accounted for by applying a random-effects model to all calculations. Additionally, subgroup analyses were performed on the basis of various criteria, including the study location, study design, country's economic status, and other characteristics.

Discussion

This review, which synthesizes studies from 21 countries across five continents, estimates the pooled prevalence of BIs in cirrhosis patients to be 35.1% (ranging from 29.2% to 41.4%). These studies focus on different patient populations, including hospitalized patients, ICU-admitted patients, ACLF patients, and outpatients, highlighting the significant burden and prevalence of BIs in these groups. This high prevalence translates into a significant annual burden on healthcare systems with respect to patient numbers and associated costs.81 These infections often lead to prolonged hospital stays, an increased need for intensive care, and a higher likelihood of complications, including sepsis and organ failure, all of which escalate healthcare costs.^{4,5} Furthermore, the recurrent nature of these infections contributes to repeated admissions and increased resource utilization, placing a considerable strain on healthcare systems.82

The meta-analysis revealed significant variations in BI prevalence across different sites in patients with cirrhosis. The most prevalent infections in patients with cirrhosis are GII (18.4%), SBP (12.4%), and UTI (7.0%). E. coli was the most prevalent pathogen, with an overall pooled prevalence of 3.8% (95% CI: 2.5-5.2, $I^2 = 87.5$ %). MDR bacteria (6.8%, 95% CI: 4.0-11.3, $I^2 = 98.5\%$) were particularly concerning, showing considerable variability across regions. Among gram-negative bacteria, Klebsiella spp. had a prevalence of 1.3% (95% CI: 0.9-1.8), whereas *Pseudomonas* spp. and Proteus spp. had lower prevalence rates of 0.3% and 0.6%, respectively. Gram-positive bacteria such as Staphylococcus spp. (2.0%, 95% CI: 1.0-4.0), with S. aureus (1.2%, 95% CI: 0.7–2.2) as the prominent species, also showed a notable presence. Overall, gram-negative bacteria (6.4%) were more prevalent than gram-positive bacteria (4.2%), reflecting the dominance of gram-negative pathogens. This may be attributable to intestinal dysbiosis, loss of gut-barrier integrity, increased bacterial translocation, immune dysfunction, and portosystemic shunting in cirrhosis, all of which promote the passage of enteric gram-negative bacteria and the development of infection.^{5,8} These findings emphasize the necessity of targeted antimicrobial strategies, especially given the high prevalence and resistance patterns of MDR organisms. 12 The overall pooled prevalence may have been underestimated due to low bacterial culture positivity in pa-

Fig. 2. Pooled overall prevalence of BIs in patients with cirrhosis in the included studies. BIs, bacterial infections.

Tian Y.X. et al: Bacterial infections in liver cirrhosis

Fig. 3. Forest plot demonstrating the pooled prevalence of BIs in patients with cirrhosis by subgroup: Clinical status. BIs, bacterial infections.

tients with cirrhosis.⁸ This limitation, especially in cases involving fastidious organisms or prior antibiotic use, could have led to underreporting and obscuring of the true infection burden, potentially biasing the meta-analysis results.⁸³ For instance, the relatively low pooled prevalence of *E. coli* (3.8%, 95% CI: 2.5–5.2) and other pathogens such as *Kleb*-

siella spp. (1.3%, 95% CI: 0.9–1.8) could reflect these diagnostic gaps. Moreover, variations in diagnostic criteria across studies, including differences in sampling methods, patient settings (e.g., ICU vs. non-ICU), and laboratory techniques, contribute to significant heterogeneity. Improved diagnostic techniques are essential to address this issue in future stud-

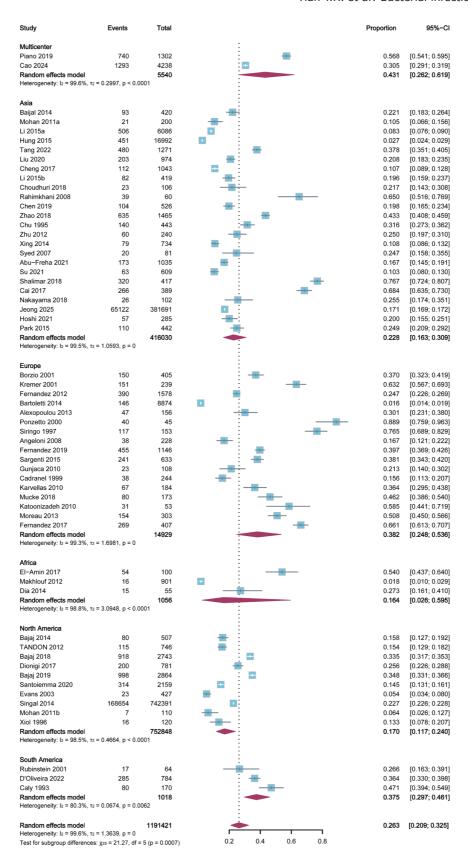


Fig. 4. Forest plot demonstrating the pooled prevalence of BIs in patients with cirrhosis by subgroup: Continent. BIs, bacterial infections.

Tian Y.X. et al: Bacterial infections in liver cirrhosis

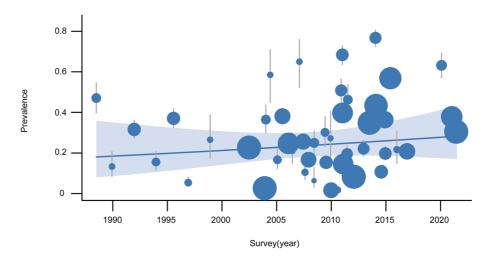


Fig. 5. The temporal trends of BIs in patients with cirrhosis from 1988 to 2022. BIs, bacterial infections.

ies

Europe ranks high in terms of the pooled prevalence of BIs among patients with cirrhosis (38.2%), which is comparable to that in South America (37.5%). This finding indicates that even in regions with well-developed healthcare systems, patients with cirrhosis remain susceptible to BIs. The wide CI (95% CI: 24.8-53.6) indicates significant variability between studies, reflecting the various study designs, patient populations, and healthcare settings across the different European countries. The pooled prevalence of BIs in patients with cirrhosis in North America is 17%, which is a moderate level. Countries such as the United States benefit from advanced healthcare systems, which allow for better infection control measures, timely diagnoses, and effective treatments. Notably, the pooled prevalence of BIs in cirrhosis patients in Africa was 16.4% (95% CI: 2.6-59.5), although the wide CI suggested considerable variability among the included studies. The lower overall infection rate might have been due to underreporting or smaller sample sizes, as well as the variability in healthcare access across different African countries. Asia has a moderately high pooled prevalence of BIs in cirrhosis, at 22.8% (95% CI: 16.3-30.9), which varies significantly among different countries, particularly between India (32.8%) and China (23.7%). The regional heterogeneity in Asia, with varying healthcare quality and practices, likely contributes to this rate.84 Countries with more advanced healthcare systems may have better infection control, whereas developing countries may still face significant challenges.85 The substantial regional variation observed in BI prevalence may be attributable to differences in case mix, patterns of healthcare exposure, antimicrobial usage, and methods of diagnosis. European cohorts often include a larger share of alcohol-related and more decompensated cirrhosis, which is associated with immune dysfunction and bacterial translocation, whereas many Asian cohorts include more hepatitis B-related disease with different risk profiles. Exposure to invasive procedures and devices, ICU admission, and a higher nosocomial proportion can also raise infection risk. Patterns of antibiotic prophylaxis and treatment, together with regional resistance ecology, may further shift observed prevalence.86 Finally, diagnostic intensity and access to culture and imaging vary across settings, which can inflate detection in well-resourced systems and depress it where testing is limited. Overall, these continental contrasts reflect biology and differences in diagnosis and testing, rather than geography alone.

In this meta-analysis, we showed that cirrhosis patients with ACLF (44.2%), as well as those in ICU (29.8%) or outpatient (34.3%) settings, present a significantly higher prevalence of BIs. Infections are key triggers for ACLF and are the most common cause. Among these, BIs are the main reason, with the resulting systemic inflammatory response syndrome leading to acute decompensation, multi-organ dysfunction, and failure in patients with cirrhosis. This chain reaction disrupts the balance of the immune system, worsens organ damage, and accelerates disease progression, ultimately

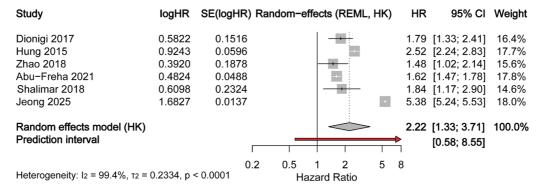


Fig. 6. Forest plot for adjusted HRs for mortality associated with BIs in patients with cirrhosis. BIs, bacterial infections; HR, hazard ratio.

increasing the risk of mortality in ACLF. Conversely, ACLF patients may exhibit an excessive systemic inflammatory response that leads to immune paralysis, thus increasing their risk for early infections.⁸⁷ We further evaluated whether the high BI prevalence in ACLF varied by the definition used. In subgroup analyses stratified by ACLF definition, the pooled BI prevalence was 51.9% (95% CI, 33.4-69.8) in studies based on the EASL-CLIF criteria and 32.0% (95% CI, 14.2-57.2) in those based on the APASL criteria; one study with an unspecified definition reported 58.5% (95% CI, 44.1-71.9). Although between-definition differences were not statistically significant (p = 0.189), the higher point estimate with EASL-CLIF may reflect enrichment for extrahepatic organ failures and a more severely ill case mix. These observations underscore the need for consensus ACLF definitions in future epidemiological studies, given the impact of definitional choices on case selection, prevalence estimates, and generalizability.88 For patients with cirrhosis admitted to ICUs for care, BIs represent a serious clinical challenge due to various risk factors. 26 These include invasive devices, immunosuppression, broad-spectrum antibiotics, and fungal colonization, which increase the risk of cross-infection and subsequent secondary infections.89 The compromised immunity, muscle weakness, and limited mobilization of patients with cirrhosis increase their susceptibility to infections.89 Treatment delays, environmental exposure, and limited preventive strategies are likely contributors to the higher infection rates among outpatients with cirrhosis.²⁶ The difference in BI prevalence between ICU and outpatient settings warrants further consideration. ICU-based studies often focus on more severe infections, potentially underestimating the total burden of infections by excluding mild or subclinical cases. Furthermore, ICU settings typically have rigorous infection control measures, including strict hygiene protocols and early infection management, which may reduce the prevalence of infections compared to outpatient settings. In contrast, the higher prevalence of infections in outpatient settings may be influenced by underdiagnosis and delayed treatment. Outpatient populations may also include undiagnosed or poorly managed decompensated cirrhosis cases, increasing susceptibility to infections.

Interestingly, there appears to be a modest upward trend in the prevalence of BIs in patients with cirrhosis. Our meta-regression analysis revealed a rising pattern in predicted prevalence from 17.9% in 1988 to 28.5% in 2022. Subgroup analysis also suggested a higher prevalence of BIs in the last 10 years (30.5%) compared to earlier periods (20.9%). Several factors may underlie this temporal increase. Advances in the medical management of chronic liver disease have prolonged the survival of cirrhotic patients, inadvertently increasing their cumulative exposure to healthcare environments where nosocomial infections are more likely to occur, particularly in high-risk settings such as the ICU.⁸³ Furthermore, the more frequent use of invasive procedures, including paracentesis, endoscopy, and catheterization, increases the degree of risk.⁹⁰

Furthermore, our pooled analysis showed that BIs were significantly associated with increased mortality risk in patients with cirrhosis, with pooled HRs of 2.22 (95% CI: 1.33–3.71). This result highlights that infections not only occur frequently but also have a major impact on patient outcomes. The immunocompromised state of cirrhosis may predispose patients to rapid clinical decline following infection, often culminating in organ failure or the development of ACLF. These findings emphasize the critical need for early recognition, prompt antimicrobial intervention, and robust infection prevention strategies to reduce infection-related mortality in this

vulnerable population.

The strengths of this review include its comprehensive analysis of global epidemiological trends in BIs among patients with cirrhosis and its investigation of variations in prevalence estimates. Although this meta-analysis provides valuable insights into the infection prevalence in patients with cirrhosis, several limitations should be considered. The heterogeneity observed across studies, in terms of population characteristics, diagnostic methods, and study quality, limits the generalizability of these results. The variability in infection prevalence may be influenced by differences in study quality, including sample size, methodological rigor, and consistency in reporting criteria. Additionally, the retrospective design of many studies may introduce selection bias, and the absence of standardized infection criteria may affect the reliability of pooled estimates. Furthermore, the variability in regional healthcare settings, including access to diagnostic tools and antimicrobial treatments, likely contributes to the underreporting of infection rates, particularly in lower-resource settings. Not all countries were represented, and several regions were informed by only a small number of studies, which limits geographic coverage and reduces the precision of regional estimates. A further methodological limitation arises from heterogeneous diagnostic criteria. A detailed inspection of the extracted criteria (Supplementary Table 3) confirms that the definition of each infection site varied across studies. For SBP, most studies defined cases by an ascitic polymorphonuclear neutrophil count of at least 250 cells/mm³, regardless of culture. However, some used 500 cells/mm³ or higher, and a few required a positive ascitic culture. For UTI, most studies combined compatible symptoms with pyuria, for example, more than 10-15 white blood cells per high-power field or more than 10 leukocytes per microliter, and/or a positive urine Gram stain or culture. Some studies explicitly required culture positivity, whereas a few accepted symptoms with pyuria without a mandatory culture. These definitional differences can bias prevalence in opposite directions because culture-dependent definitions tend to underestimate infections when prior antibiotics reduce yield or when the inoculum is low, whereas clinical or composite criteria may overestimate by capturing noninfectious presentations. The pooled estimates should therefore be read as averages across nonidentical constructs, which highlights the need for standardized site-specific definitions and transparent microbiological reporting to improve comparability and external validity. A recent multicenter study in China reported substantial differences in the clinical and microbiological profiles of BIs compared with global data, including a notably high prevalence of MDR organisms and a lower adherence to empirical antibiotic guidelines. These findings underscore the impact of regional practice variations on both diagnostic yield and treatment outcomes, reinforcing the necessity of internationally harmonized criteria and reporting standards.91 Another limitation is the insufficient data on clinical characteristics, such as decompensated versus compensated cirrhosis or cirrhosis etiology, limiting specific subgroup analyses. Moreover, our review did not specifically address the potential relationship between MDR and antibiotic usage (for instance, in hepatic encephalopathy or prophylaxis against SBP), which needs further investigation. Future studies should address these gaps to better understand infection risks and improve the applicability of findings. These findings underscore the need for improved diagnostic protocols, standardized infection criteria, and more uniform study designs in future research to provide clearer guidance for the clinical management of patients with cirrhosis.

Conclusions

BIs are common in patients with liver cirrhosis and show a modest upward trend over time, with the highest burdens observed in ACLF and notable regional variation. Gastrointestinal infections, SBP and UTI predominate, gram-negative organisms are more frequent than gram-positive organisms, and MDR pathogens are significant. Importantly, infections are associated with a higher mortality, underscoring the need for improved diagnostic approaches and standardized research frameworks to deliver clearer guidance for the clinical management of patients with liver cirrhosis.

Funding

This work was supported by grants from the ECCM program of the Clinical Research Center of Shandong University (2021SDUCRCB006), the National Natural Science Foundation of China (82270631), and Young Taishan Scholars (tsgn202103169).

Conflict of interest

YCF has been an Associate Editor of Journal of Clinical and Translational Hepatology since 2013. The other authors have no conflict of interests related to this publication.

Author contributions

Data analysis and interpretation, drafting of the manuscript (YXT, YPW), data collection (YXT, YPW, BYW, JZ, QA), critical comments and reading (YHY), study conception and design, revision of the manuscript, and leadership responsibility for the research (YCF). All authors have approved the final version and publication of the manuscript.

References

- de Nies L, Kobras CM, Stracy M, Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 2023;21(12):789–804. doi:10.1038/s41579-023-00936-9, PMID:37542123.
- Centers for Disease Control and Prevention. National Healthcare Safety Network (NHSN): patient safety component manual. Available from: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf.
- [3] European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units annual epidemiological report for 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-acquired-intensive-care-
- [4] Bajaj JS, O'Leary JG, Reddy KR, Wong F, Biggins SW, Patton H, et al. Survival in infection-related acute-on-chronic liver failure is defined by
- trahepatic organ failures. Hepatology 2014;60(1):250–256. doi:10.1002/hep.27077, PMID:24677131.

 Jalan R, Fernandez J, Wiest R, Schnabl B, Moreau R, Angeli P, et al. Bacterial infections in cirrhosis: a position statement based on the EASL Special Conference 2013. J Hepatol 2014;60(6):1310–1324. doi:10.1016/j.jhep.2014.01.024, PMID:24530646.
- Sargenti K, Prytz H, Nilsson E, Kalaitzakis E. Predictors of mortality among patients with compensated and decompensated liver cirrhosis: the role of bacterial infections and infection-related acute-on-chronic liver failure. Scand J Gastroenterol 2015;50(7):875–883. doi:10.3109/00365521.2015
- Scand J dastroenterol 2015;30(7):875–883. doi:10.3109/00365321.2015
 .1017834, PMID:25697824.
 [7] Tandon P, Delisle A, Topal JE, Garcia-Tsao G. High prevalence of antibiotic-resistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol 2012;10(11):1291–1298.
- doi:10.1016/j.cgh.2012.08.017, PMID:22902776.
 Bajaj JS, Kamath PS, Reddy KR. The Evolving Challenge of Infections in Cirrhosis. N Engl J Med 2021;384(24):2317–2330. doi:10.1056/NEJM-
- ra2021808, PMID:34133861. Arvaniti V, D'Amico G, Fede G, Manousou P, Tsochatzis E, Pleguezuelo M, *et* al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010;139(4):1246–1256.e5. doi:10.1053/j.gastro.2010.06.019, PMID:20558165.
- [10] Fernández J, Acevedo J, Castro M, Garcia O, de Lope CR, Roca D, et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 2012;55(5):1551–1561. doi:10.1002/HEP.25532, PMID:22183941.
- [11] Bajaj JS, OʻLeary JG, Reddy KR, Wong F, Olson JC, Subramanian RM, et al.

- Second infections independently increase mortality in hospitalized patients with cirrhosis: the North American consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology 2012;56(6):2328–2335. doi:10.1002/hep.25947, PMID:22806618.
- [12] Piano S, Singh V, Caraceni P, Maiwall R, Alessandria C, Fernandez J, et al. Epidemiology and Effects of Bacterial Infections in Patients With Cir-Worldwide. Gastroenterology 2019;156(5):1368-1380.e10.
- doi:10.1053/j.gastro.2018.12.005, PMID:30552895.

 [13] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi:10.1136/bmj.n71, PMID: 33782057.
- [14] Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021;372:n160. doi:10.1136/ bmj.n160, PMID:33781993.
- [15] European Association for the Study of the Liver. EASL Clinical Practice Guidelines on acute-on-chronic liver failure. J Hepatol 2023;79(2):461-491. doi:10.1016/j.jhep.2023.04.021, PMID:37364789.
- [16] Sarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update. Hepatol Int 2019;13(4):353–390. doi:10.1007/s12072-019-09946-3, PMID: 31172417.
- [17] Choudhury A, Kulkarni AV, Arora V, Soin AS, Dokmeci AK, Chowdhury A, et al. Acute-on-chronic liver failure (ACLF): the 'Kyoto Consensus'-steps from Asia. Hepatol Int 2025;19(1):1–69. doi:10.1007/s12072-024-10773-4, PMID:39961976.
- [18] Wu T, Li J, Shao L, Xin J, Jiang L, Zhou Q, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus-related acute-on-chronic liver failure. Gut 2018;67(12):2181-2191. doi:10.1136/gutjnl-2017-314641, PMID:28928275.
 [19] Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies report-
- ing prevalence and cumulative incidence data. Int J Evid Based Healthc 2015;13(3):147-153. doi:10.1097/XEB.000000000000054, PMID:263
- [20] Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health 2013;67(11):974–978. doi:10.1136/jech-2013-203104, PMID:23963506.
- [21] Barker TH, Migliavaca CB, Stein C, Colpani V, Falavigna M, Aromataris E, et al. Conducting proportional meta-analysis in different types of systematic reviews: a guide for synthesisers of evidence. BMC Med Res Methodol
- 2021;21(1):189. doi:10.1186/s12874-021-01381-z, PMID:34544368.

 [22] Cochrane. Chapter 10: Analysing data and undertaking meta-analyses. Cochrane Handbook for Systematic Reviews of Interventions. London: Cochrane; 2025.
- [23] World Bank country classifications by income level for 2024-2025. Available from: https://blogs.worldbank.órg/zh/opendata/world-bank-country-classifications-by-income-level-for-2024-2025.
- [24] Vatcheva KP, Lee M, McCormick JB, Rahbar MH. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology (Sunnyvale) 2016;6(2):227. doi:10.4172/2161-1165.1000227, PMID:27274911. [25] The R Core Team. R: A language and environment for statistical comput-
- ing. Vienna: R Core Team, 2026. [26] Fernández J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, et al.
- Bacterial and fungal infections in acute-on-chronic liver failure: prevalence
- characteristics and impact on prognosis. Gut 2018;67(10):1870–1880. doi:10.1136/gutjnl-2017-314240, PMID:28847867.

 [27] Baijal R, Amarapurkar D, Praveen Kumar HR, Kulkarni S, Shah N, Doshi S, et al. A multicenter prospective study of infections related morbidity and mortality in cirrhosis of liver. Indian J Gastroenterol 2014;33(4):336–342. doi:10.1007/s12664-014-0461-3, PMID:24879611.
- [28] Borzio M, Salerno F, Piantoni L, Cazzaniga M, Angeli P, Bissoli F, et al.
 Bacterial infection in patients with advanced cirrhosis: a multicentre
- Bacterial infection in patients with advanced cirrnosis: a multicentre prospective study. Dig Liver Dis 2001;33(1):41–48. doi:10.1016/s1590-8658(01)80134-1, PMID:11303974.

 [29] Kremer WM, Gairing SJ, Kaps L, Ismail E, Kalampoka V, Hilscher M, et al. Characteristics of bacterial infections and prevalence of multidrug-resistant bacteria in hospitalized patients with liver cirrhosis in Germany. Ann Hepatol 2022;27(5):100719. doi:10.1016/j.aohep.2022.100719, PMID:35460883 PMID:35460883.
- [30] Mohan P, Ramu B, Bhaskar E, Venkataraman J. Prevalence and risk factors for bacterial skin infection and mortality in cirrhosis. Ann Hepatol 2011;
- (101):15-20. doi:10.1016/S1665-2681(19)31581-9, PMID:21301004.
 [31] El-Amin H, Sabry AMM, Ahmed RE, Makhlouf NA. Types and microbiological spectrum of infections in patients with cirrhosis: A single-centre experience in Upper Egypt. Arab J Gastroenterol 2017;18(3):159-164. doi:10.1016/j.
- ajg.2017.09.005, PMID:28943132.
 [32] Bajaj JS, Reddy RK, Tandon P, Wong F, Kamath PS, Biggins SW, et al.
 Prediction of Fungal Infection Development and Their Impact on Survival Using the NACSELD Cohort. Am J Gastroenterol 2018;113(4):556-563. doi:10.1038/ajg.2017.471, PMID:29257141.
- [33] Bartoletti M, Giannella M, Caraceni P, Domenicali M, Ambretti S, Tedeschi S, et al. Epidemiology and outcomes of bloodstream infection in patients with cirrhosis. J Hepatol 2014;61(1):51-58. doi:10.1016/j.jhep.2014.03.021, PMID:24681345.
- [34] Li YT, Yu CB, Huang JR, Qin ZJ, Li LJ. Pathogen profile and drug resist-ance analysis of spontaneous peritonitis in cirrhotic patients. World J Gastroenterol 2015;21(36):10409-10417. doi:10.3748/wjg.v21.i36.10409, PMID:26420967.

- [35] Alexopoulou A, Papadopoulos N, Eliopoulos DG, Alexaki A, Tsiriga A, Toutouza M, et al. Increasing frequency of gram-positive cocci and gram-negative multidrug-resistant bacteria in spontaneous bacterial peritonitis. Liver
- Int 2013;33(7):975–981. doi:10.1111/liv.12152, PMID:23522099.

 [36] Dionigi E, Garcovich M, Borzio M, Leandro G, Majumdar A, Tsami A, et al. Bacterial Infections Change Natural History of Cirrhosis Irrespective of Liver Disease Severity. Am J Gastroenterol 2017;112(4):588-596. doi:10.1038/ajg.2017.19, PMID:28220780.
- [37] Bajaj JS, O'Leary JG, Tandon P, Wong F, Garcia-Tsao G, Kamath PS, et al. No-socomial Infections Are Frequent and Negatively Impact Outcomes in Hospitalized Patients With Cirrhosis. Am J Gastroenterol 2019;114(7):1091–1100. doi:10.14309/ajg.000000000000280, PMID:31180922.

 [38] Caly WR, Strauss E. A prospective study of bacterial infections in patients with cirrhosis. J Hepatol 1993;18(3):353–358. doi:10.1016/s0168-0278(05)00280.
- (a) Santoiemma PP, Dakwar O, Angarone MP. A retrospective analysis of cases of Spontaneous Bacterial Peritonitis in cirrhosis patients. PLoS One 2020;15(9):e0239470. doi:10.1371/journal.pone.0239470, pMID:23096739. PMID:32986728.
- PMID: 32986728.
 [40] Evans LT, Kim WR, Poterucha JJ, Kamath PS. Spontaneous bacterial peritonitis in asymptomatic outpatients with cirrhotic ascites. Hepatology 2003;37(4):897–901. doi:10.1053/jhep.2003.50119, PMID:12668984.
 [41] Hung TH, Tsai CC, Hsieh YH, Tsai CC. The long-term mortality of spontaneous bacterial peritonitis in cirrhotic patients: A 3-year nationwide cohort study. Turk J Gastroenterol 2015;26(2):159–162. doi:10.5152/tip.2015.4899_DMID:25835115
- conort study. IURX J Gastroenterol 2015;26(2):159–162. doi:10.5152/tjg.2015.4829, PMID:25835115.

 [42] D'Oliveira RAC, Pereira LCD, Codes L, Rocha MS, Bittencourt PL. ANALY-SIS OF HEALTHCARE ASSOCIATED AND HOSPITAL ACQUIRED INFECTIONS IN CRITICALLY ILL PATIENTS WITH CIRRHOSIS. Arq Gastroenterol 2022;59(1):102–109. doi:10.1590/S0004-2803.202200001-18, PMID:354 42319.
- [43] Tang D, Maihebuba B, Sun XF, Lu XB. Analysis of pathogenic bacteria in [43] Tang D, Maihebuba B, Sun XF, Lu XB. Analysis of pathogenic bacteria in cirrhotic patients complicated with bacterial infection in a tertiary hospital in Xinjiang. Zhonghua Gan Zang Bing Za Zhi 2022;30(8):885–888. doi:10.3760/cma.j.cn501113-20201224-00677, PMID:36207946.
 [44] Wu L, Hong H, Li WZ, Liu LL, Xue DY, Zhang J, et al. Clinical characteristics of bacterial infections in patients with liver cirrhosis. Chin J Infect Chemother 2020;20(6):601–606. doi:10.16718/j.1009-7708.2020.06.003.
 [45] Cheng XL, Yang CJ, Liu K, Han LF. Clinical study of bloodstream infections in patients with decompensated cirrhosis. Chin J Nosocomiol 2017;27(19):4386–4388. doi:10.11816/cn.ni.2017-170727.
 [46] Li J, Hu ZB, Li YC, Hu WY, Liu HX, Zhou L, et al. Distribution and drug

- [46] Li J, Hu ZB, Li YC, Hu WY, Luo HX, Zhou J, et al. Distribution and drug resistance of pathogens causing abdominal infections in liver cirrhosis patients. Chin J Nosocomiol 2015;25(17):3896-3898. doi:10.11816/cn.ni.2015-140890.
- [47] Choudhuri AH, Khurana P, Biswas PS, Uppal R. Epidemiology and risk factors for multidrug-resistant bacteria in critically ill patients with liver disease. Saudi J Anaesth 2018;12(3):389–394. doi:10.4103/sja.SJA_749_17, PMID:30100836
- [48] Ponzetto A, Pellicano R, Leone N, Berrutti M, Turrini F, Rizzetto M. Heli-[48] Ponzetto A, Pellicano R, Leone N, Berrutti M, Turrini F, Rizzetto M. Helicobacter pylori seroprevalence in cirrhotic patients with hepatitis B virus infection. Neth J Med 2000;56(6):206–210. doi:10.1016/s0300-2977(00)00033-4, PMID:10821975.
 [49] Rahimkhani M, Ghofrani H. Helicobacter Pylori and Peptic Ulcer in Cirrhotic Patients. Pak J Med Sci 2008;24(6):849–852.
 [50] Siringo S, Vaira D, Menegatti M, Piscaglia F, Sofia S, Gaetani M, et al. High prevalence of Helicobacter pylori in liver cirrhosis: relationship with clinical and endoscopic features and the risk of peptic ulcer.
 Die Sci 1007;40/10103024.03034.
- Dis Sci 1997;42(10):2024-2030. doi:10.1023/a:1018849930107, PMID: 9365129.
- [51] Angeloni S, Leboffe C, Parente A, Venditti M, Giordano A, Merli M, et al. Ef-
- [51] Angeloni S, Leboffe C, Parente A, Venditti M, Giordano A, Merli M, et al. Eficacy of current guidelines for the treatment of spontaneous bacterial peritonitis in the clinical practice. World J Gastroenterol 2008;14(17):2757–2762. doi:10.3748/wjg.14.2757, PMID:18461661.
 [52] Chen Y, Gu H, Lv T, Yan D, Xu Q, Gu S, et al. Longitudinal investigation of carriage rates and genotypes of toxigenic Clostridium difficile in hepatic cirrhosis patients. Epidemiol Infect 2019;147:e166. doi:10.1017/S0950268819000554, PMID:31063095.
 [53] Zhao R, Ma J, Li P, Fang H, Sun S, Wu W, et al. Multidrug-resistant bacterial infections in cirrhotic patients: an epidemiological study. Expert Rev Gastroenterol Hepatol 2018;12(11):1167–1174. doi:10.1080/17474124.2 018.1515627, PMID:30152255.
- Gastroenterol Hepatol 2018;12(11):1167–1174. doi:10.1080/17474124.2 018.1515627, PMID:30152255.

 [54] Fernández J, Prado V, Trebicka J, Amoros A, Gustot T, Wiest R, et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J Hepatol 2019;70(3):398–411. doi:10.1016/j.jhep.2018.10.027, PMID:30391380.

 [55] Gunjaca I, Francetić I. Prevalence and clinical outcome of spontaneous bacterial peritonitis in hospitalized patients with liver cirrhosis: a prospective observational study in central part of Croatia. Acta Clin Croat 2010;49(1):11–18. doi:10.54393/pjhs.v3i06.361, PMID:20635579.

 [56] Singal AK, Salameh H, Kamath PS. Prevalence and in-hospital mortality trends of infections among patients with cirrhosis: a nationwide study of hospitalised patients in the United States. Aliment Pharmacol Ther 2014;40(1):105–112. doi:10.1111/apt.12797, PMID:24832591.

 [57] Chu CM, Chang KY, Liaw YF. Prevalence and prognostic significance of bacterascites in cirrhosis with ascites. Dig Dis Sci 1995;40(3):561–565. doi:10.1007/BF02064369, PMID:7895544.

 [58] Mohan P, Venkataraman J. Prevalence and risk factors for unsuspected

- [58] Mohan P, Venkataraman J. Prevalence and risk factors for unsuspected spontaneous ascitic fluid infection in cirrhotics undergoing therapeutic paracentesis in an outpatient clinic. Indian J Gastroenterol 2011;30(5):221-224. doi:10.1007/s12664-011-0131-7, PMID:21956818.

- [59] Cadranel JF, Denis J, Pauwels A, Barbare JC, Eugène C, di Martino V, et al. Prevalence and risk factors of bacteriuria in cirrhotic patients: a prospective case-control multicenter study in 244 patients. J Hepatol 1999;31(3):464–
- case-control muticenter study in 244 patients. J Hepatol 1999;31(3):464–468. doi:10.1016/s0168-8278(99)80038-5, PMID:10488705.
 [60] Zhu JH. Related factors for nosocomial infections in cirrhosis patients during decompensated period. Chin J Nosocomiol 2012;22(5):975–977.
 [61] Xing YM, Feng D, Zhou RJ. Risk factors of nosocomial infections in patients with circhosis. Chin J Nosocomial 2012;24(5):4024-4034-603-4031.
- with cirrhosis. Chin J Nosocomiol 2014;24(16):4041-4042+4045.
- [62] Makhlouf HA, Morsy KH, Makhlouf NA, Eldin EN, Khairy M. Spontane-ous bacterial empyema in patients with liver cirrhosis in Upper Egypt: prevalence and causative organisms. Hepatol Int 2013;7(1):274–279. doi:10.1007/s12072-012-9372-5, PMID:26201642.

 [63] Xiol X, Castellví JM, Guardiola J, Sesé E, Castellote J, Perelló A, et al. Spontaneous bacterial empyema in cirrhotic patients: a prospective
- study. Hepatolo PMID:8666323. Hepatology 1996;23(4):719-723. doi:10.1002/hep.510230410,
- [64] Syed VA, Ansari JA, Karki P, Regmi M, Khanal B. Spontaneous bacterial peritonitis (SBP) in cirrhotic ascites: a prospective study in a tertiary care hospital, Nepal. Kathmandu Univ Med J (KUMJ) 2007;5(1):48–59. PMID: 18603986.
- [65] Abu-Freha N, Michael T, Poupko L, Estis-Deaton A, Aasla M, Abu-Freha O, et al. Spontaneous Bacterial Peritonitis among Cirrhotic Patients: Prevalence, Clinical Characteristics, and Outcomes. J Clin Med 2021;11(1):227. doi:10.3390/jcm11010227, PMID:35011969.
- doi:10.3390/jcm11010227, PMID:35011969.
 [66] Dia D, Serme YK, Bassène ML, Halim A, Diallo S, Thioubou MA, et al. Infection spontanée du liquide d'ascite à Dakar, Sénégal : étude de cinquante-cinq patients cirrhotiques [Spontaneous bacterial peritonitis in Dakar, Senegal: study of 55 patients with cirrhosis]. Med Sante Trop 2014;24(1):55-57. doi:10.1684/mst.2013.0260, PMID:24317300.
 [67] Rubinstein P, Morales M, Pandiani A, Bagattini JC. Peritonitis bacteriana espontánea en cirrosis hepática con ascitis: incidencia, bacteriología y mortalidad en Uruguay [Spontaneous bacterial peritonitis in hepatic cirrhosis with ascites: incidence, bacteriology and mortality in Uruguay]. Acta Gastroenterol Latinoam 2001;31(4):307-312. doi:10.1109/TEN-CON.2004.1414844, PMID:11766541.
 [68] Karvellas CJ, Pink F, McPhail M, Austin M, Auzinger G, Bernal W, et al. Bacteremia, acute physiology and chronic health evaluation II and modified end stage liver disease are independent predictors of mortality in criti-
- end stage liver disease are independent predictors of mortality in criti-cally ill nontransplanted patients with acute on chronic liver failure. Crit Care Med 2010;38(1):121-126. doi:10.1097/CCM.0b013e3181b42a1c,
- [69] Mücke MM, Rumyantseva T, Mücke VT, Schwarzkopf K, Joshi S, Kempf VAJ, et al. Bacterial infection-triggered acute-on-chronic liver failure is associat-ed with increased mortality. Liver Int 2018;38(4):645–653. doi:10.1111/ liv.13568, PMID:28853199.
- [70] Katoonizadeh A, Laleman W, Verslype C, Wilmer A, Maleux G, Roskams T, et al. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study. Gut 2010;59(11):1561-1569. doi:10.1136/gut.2009.189639, PMID:20675694.
 [71] Su H, Tong J, Liu X, Li C, Chen J, Xu X, et al. Characteristics and outcome of processing laborators infortion in actions with acute on chaptic live.
- of nosocomial bloodstream infection in patients with acute-on-chronic liver failure. Eur J Gastroenterol Hepatol 2021;33(1):83–88. doi:10.1097/MEG.00000000001699, PMID:32118849. [72] Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, *et al.* Acute-on-
- [72] Moreau K, Jalani K, Gilles F, Pavesi M, Higeli F, Cottoba J, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013;144(7):1426–1437.e14379. doi:10.1053/j.gastro.2013.02.042, PMID:23474284.
 [73] Shalimar, Rout G, Jadaun SS, Ranjan G, Kedia S, Gunjan D, et al. Prevalence, predictors and impact of bacterial infection in acute on chronic liver failure patients. Dia Liver Dia 2018;160(11):1325. 1321. doi:10.1016/j.
- failure patients. Dig Liver Dis 2018;50(11):1225-1231. doi:10.1016/j. dld.2018.05.013, PMID:29910108.

 [74] Cai JJ, Zhang MC, Han T, Jiang HQ. Characteristics of infection and its impact on short-term outcome in patients with acute-on-chronic liver failure. Medicine (Baltimore) 2017;96(37):e8057. doi:10.1097/MD.000000000000008057, PMID:28906399.
- [75] Cao Z, Wong F, Choudhury AK, Kamath PS, Topazian M, Torre A, et al. Global prevalence and characteristics of infections and clinical outcomes in hospitalised patients with cirrhosis: a prospective cohort study for the CLEARED Consortium. Lancet Gastroenterol Hepatol 2024;9(11):997–
- 1009. doi:10.1016/S2468-1253(24)00224-3, PMID:39243795.

 [76] Nakayama N, Uemura H, Uchida Y, Tomiya T, Ido A, Inoue K, *et al.* A multicenter pilot survey to clarify the clinical features of patients with
- multicenter pilot survey to clarify the clinical features of patients with acute-on-chronic liver failure in Japan. Hepatol Res 2018;48(4):303–312. doi:10.1111/hepr.13064, PMID:29341357.

 [77] Jeong JY, Cho JY, Kang D, Kim JH, Park SJ, Joo EJ, et al. Impact of serious infection on mortality of patients with chronic liver disease: a nationwide population-based cohort study. Clin Gastroenterol Hepatol 2025. doi:10.1016/j.cgh.2025.06.026, PMID:40651781.

 [78] Hoshi H, Chu PS, Yoshida A, Taniki N, Morikawa R, Yamataka K, et al. Vulnerability to recurrent episodes of acute decompensation/acute-on-chronic liver failure characterizes those triggered by indeterminate precipitants in patients with liver cirrhosis. PLoS One 2021;16(4):e0250062. doi:10.1371/journal.pone.0250062, PMID:33848309.

 [79] Park JK, Lee CH, Kim IH, Kim SM, Jang JW, Kim SH, et al. Clinical characteristics and prognostic impact of bacterial infection in hospitalized patients with alcoholic liver disease. J Korean Med Sci 2015;30(5):598–605.
- tients with alcoholic liver disease. J Korean Med Sci 2015;30(5):598-605. doi:10.3346/jkms.2015.30.5.598, PMID:25931791.
- [80] Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics 2018;74(3):785–794. doi:10.1111/biom.12817, PMID:29141096.
 [81] Allen AM, Kim WR, Moriarty JP, Shah ND, Larson JJ, Kamath PS. Time trends
- in the health care burden and mortality of acute on chronic liver failure

- in the United States. Hepatology 2016;64(6):2165-2172. doi:10.1002/
- hep.28812, PMID:27696493. [82] Piano S, Bunchorntavakul C, Marciano S, Rajender Reddy K. Infections in cirrhosis. Lancet Gastroenterol Hepatol 2024;9(8):745–757. doi:10.1016/ S2468-1253(24)00078-5, PMID:38754453. [83] Bakhit M, Hoffmann T, Scott AM, Beller E, Rathbone J, Del Mar C. Resistance

- [83] Bakhit M, Hoffmann T, Scott AM, Beller E, Rathbone J, Del Mar C. Resistance decay in individuals after antibiotic exposure in primary care: a systematic review and meta-analysis. BMC Med 2018;16(1):126. doi:10.1186/s12916-018-1109-4, PMID:30081902.
 [84] Liu YB, Chen MK. Epidemiology of liver cirrhosis and associated complications: Current knowledge and future directions. World J Gastroenterol 2022;28(41):5910-5930. doi:10.3748/wjg.v28.i41.5910, PMID:36405106.
 [85] Allaire M, Cadranel JF, Nguyen TTN, Garioud A, Zougmore H, Heng R, et al. Management of infections in patients with cirrhosis in the context of increasing therapeutic resistance: A systematic review. Clin Res Hepatol Gastroenterol 2020:44(3):264-274. doi:10.1016/i.clinre.2019.10.003. PMID: troenterol 2020;44(3):264-274. doi:10.1016/j.clinre.2019.10.003, PMID:
- [86] Fernández J, Piano S, Bartoletti M, Wey EQ. Management of bacterial and fungal infections in cirrhosis: The MDRO challenge. J Hepatol 2021;75(Sup-

- pl 1):S101-S117. doi:10.1016/j.jhep.2020.11.010, PMID:34039482.
- [87] Arroyo V, Moreau R, Jalan R. Acute-on-Chronic Liver Failure. N Engl J Med 2020;382(22):2137–2145. doi:10.1056/NEJMra1914900, PMID:324 59924.
- [88] Xu Z, Zhang X, Chen J, Shi Y, Ji S. Bacterial Infections in Acute-on-chronic Liver Failure: Epidemiology, Diagnosis, Pathogenesis, and Management. J Clin Transl Hepatol 2024;12(7):667–676. doi:10.14218/JCTH.2024.00137, PMID:38993512.
- [89] Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol 2012;56(Suppl 1):S1-12. doi:10.1016/S0168-8278(12)60002-6,
- PMID:22300459.
 [90] Tapper EB, Parikh ND. Diagnosis and Management of Cirrhosis and Its
- [90] Japper EB, Pariki ND. Diagnosis and Management of Cirrnosis and List Complications: A Review. JAMA 2023;329(18):1589–1602. doi:10.1001/jama.2023.5997, PMID:37159031.
 [91] Zhang X, Weng H, Deng Q, Deng M, Wu X, Huang Z, et al. Clinical, Microbiological, and Antibiotic Treatment Characteristics of Bacterial Infections in Patients with Liver Cirrhosis in China: A Multicenter Study. J Clin Transl Hepatol 2025;13(8):644–654. doi:10.14218/JCTH.2025.00211, PMID:48862384 PMID:40862284.